Reporter

Part:BBa_K1899003:Design

Designed by: iGEM2016_HKUST   Group: iGEM16_Hong_Kong_HKUST   (2016-08-28)


Superfolder GFP


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 440
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 741
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

Source

Waldo lab

References

1. Al-Homsi, L., Al-Assad, J. M., Kweider, M., Al-Okla, S., & Abbady, A. Q. (2012). Construction of pRSET-sfGFP plasmid for fusion-protein expression, purification and detection. Jordan J Biol Sci, 5(4), 279-288.

2. Pedelacq JD, Cabantous S, Tran T, Terwilliger TC and Waldo GS. 2006. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol., 24: 79-88.

3. Andrews BT, Schoenfish AR, Roy M, Waldo G and Jennings PA. 2007. The rough energy landscape of superfolder GFP is linked to the chromophore. J Mol Biol., 373: 476-490.

4. Fisher AC and DeLisa MP. 2008. Laboratory evolution of fastfolding green fluorescent protein using secretory pathway quality control. PLoS One, 3: e2351.

5. Cabantous S, Terwilliger TC and Waldo GS. 2005b. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol., 23: 102-107.

6. Cabantous S and Waldo G. 2006. In vivo and in vitro protein solubility assays using split GFP. Nat Methods, 3: 845-854.

7. Waldo, G. S., Standish, B. M., Berendzen, J., & Terwilliger, T. C. (1999). Rapid protein-folding assay using green fluorescent protein. Nature biotechnology, 17(7), 691-695.

8. Waldo, G. S. (2003). Improving protein folding efficiency by directed evolution using the GFP folding reporter. Directed Enzyme Evolution: Screening and Selection Methods, 343-359.